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VIBRATIONS OF THE UNIVERSE 

bY 
E. R. Harrison 

ABSTRACT 

The aim is to review and extend our knowledge of the time de- 

pendence of fluctuations in density in homogeneous and isotropic 

models of the universe. Perturbations are assumed to be smalland 

a linearized, normal mode analysis is used. Only gravitational in- 

teractions and irrotational motions a re  considered. Using first 

Newtonian and then general relativity theory it is shown that the 

amplitude of various modes increases in expanding and contracting 

models of the universe. The origin and growth of celestial struc- 

ture require that uniform m-nd& ~f the 1~11i~erse 2x-e -;?&.zcbk 

against arbitrarily small perturbations. However, the rate of growth 

of the various modes, particularly in an expanding universe, is suf- 

ficiently slow to cast doubt on the instability of the models. A lin- 

earized gravitational theory appears inadequate to account for the 

origin of structure in the universe; hence alternative explanations 

must be found. -4 -7- 
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VIBRATIONS OF THE UNIVERSE 

1. INTRODUCTION 

Nobody believes that the universe was created in its present form, complete 

in all its array of celestial detail. If the inchoate universe is featureless, then 

we must show how differentiation and structure contrive to evolve. The physics 

and evolution of stellar and galactic structure is the concern of astrophysics. 

But the nature and development of an environment favorable to the formation of 

astrophysical objects is the concern of cosmology. 

The study of the vibrations of the universe is a fascinating subject, apart 

from any other consideration. However, in an attempt to account for the actual 

universe, as distinct from the smooth idealized models of cosmology, we might 

hopefuiiy expect t’nat the universe is -mi&ihk. Iii this vzy, v z r i ~ u s  =:=des cf 

vibration of arbitrarily small amplitude grow relatively rapidly and eventually, 

in a time short compared with the age of the universe, the foundations of astro- 

physical structure are  laid down. However, i t  turns out that in an expanding 

universe the growth rates of the various modes a re  too small to account for 

appreciable irregularity. 

We assume that all modes have small amplitudes and use linearized equa- 

tions. Only gravitational interactions are considered; the motions are  assumed 

to be irrotational; and a simple equation of state is used. The behaviour of the 

modes is then studied, first with Newtonian and 

Some general comments a re  made in Section 6 .  

then general relativity theory. 
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2. ORIGIN OF STRUCTURE IN THE UNIVERSE 

2.1 Initial Conditions 

Cosmology is the science of the universe; at  present i t  seeks only to account 

for the macroscopic nature of the universe. Instead of the physical universe, 

cosmology deals with a featureless, idealized universe that is everywhere iso- 

tropic and homogeneous and contains a uniform fluid of rudimentary properties.'!* 

Out of such generalizations emerge several simple models, and one's choice is 

largely an act of faith. Cosmology, in spite of its antiquity, is in an immature 

state; ultimately it must bridge the gap between its present idealizations and the 

physical universe with realistic models. 

The provision of background and initial conditions for the origin and forma- 

tion of structure is a cosmological problem. The subsequent evolution of struc- 

ture into i ts  detailed manifestations lies in the provinces of cosmogony, astro- 

physics, and every other science. The physical universe, as distinct from the 

current cosmological models, is complex and diverse. From the simplest of all 

possible points of view the diversity consists of variations in the density and 

motion of matter. Given a cosmological model that is a valid description of the 

universe in the large, i t  should be possible to show, with refinements of the 

cosmic fluid when necessary, that perturbations a r e  capable of evolving in time 

into configurations of density and motion which resemble the grosser features 

of the physical world. The first step therefore is to inject some realism into the 

cosmological models by perturbing their fluid density and motion. The behaviour 

of the perturbations might then provide a means of judging whether a model is 

acceptable or not. 

2 



Two hypotheses a re  possible concerning the initial conditions in an evolving 

universe:* 

A. Structure is created with the universe, o r  imprinted in it from the earliest 

moment of its expansion. 

B. Structure develops in the universe from initially small random 

disturbances. 

Hypothesis A is as old as cosmology. Al l  current models (in which the cosmo- 

logical term is zero) evolve either from or through a singular state. The uni- 

verse originates before, at the time of, or after the singular state. It is impos- 

sible to imagine any structure surviving the singular state and therefore hypothesis 

A demands that the origin occurs after the singular state. Alternatively, by modi- 

fying the laws of physics! the singular state can be avoided and the universe 

contracts to and expands from a finite size. This theory has the advantage that 

some structure might survive passage through the 'bounce' and act as dense 

nuclei around which further condensations subsequently form. It has the further 

advantage that in the linear theory, as we shall show, the growth rate of disturb- 

ances is usually larger in a contracting universe than in an expanding universe. 

The concept of condensations growing in a uniformly dispersed medium 

(hypothesis B) is as old as the idea of gravitation. Jeans points out that in some 

correspondence Newton remarks: 

throughout an infinite space, it could never convene into one mass; but some of 

'But if the matter were evenly disposed 

*These hypotheses do not cover the case of  the steady state model which i s  outside the range of 
this discussion. 
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it would convene into one mass and some into another, so as to make an infinite 

number of great masses, scattered great distances from one to another through- 

out all that infinite space. And thus might the sun and fixed stars be formed, 

supposing that matter were of a lucid nature.' In his own work on gravitational 

instability Jeans writes:6 'We have found that, as Newton first conjectured, a 

chaotic mass of gas of approximately uniform density and of very great extent 

would be dynamically unstable; nuclei would tend to form in it, around which the 

whole of the matter would ultimately condense.' These comments were made 

with the idea in mind of a static universe. If we consider a universe already 

fragmented into widely separated 'islands ,' each having a density large compared 

with the average density, such that the contents of each island do not partake in 

the expansion between the islands, then Jeans' comments are acceptable. But 

these are the initial conditions of cosmogony; the problem for cosmology is to 

explain how it is possible in the first place for islands to form. 

A principal difference between the two hypotheses is that in B perturbations 

of the universe can, at least initially, be studied with a linear theory, whereas 

in A it is doubtful whether a linear theory is valid at any stage in an expanding 

universe. 

In this discussion we shall discount ad hoc modifications of gravitational 

theory and hence A reduces to the proposition that the universe began with much 

of its detailed design predetermined. The obvious comment is that such ideas 

run counter to the main trend of science. By developing and employing the laws 

of physics, with their properties of symmetry and invariance, the aim is to 

rationalize our observations in terms of given initial conditions. With the 

. 
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advance of science the laws of physics account for more and more of the regu- 

larity of nature at the expense of the need to assume regularity in the initial 

conditions. One might hope that ultimately the laws of physics, operating in a 

universe containing random and irregular fluctuations of small amplitude, will 

be adequate to account for the observed macroscopic structure of the universe. 

The choice between hypotheses A and B is a matter of preference; if A, then 

there is scarcely any problem for cosmology; but if B, then it is necessary to 

show at least that in a linear theory certain fluctuations can grow in an expand- 

ing universe. In the following we adopt hypothesis B. 

2.2 Linear Stability Theory 

It is assumed that all disturbances are small and consist of a superposition 

of normal modes of a complete set; only gravitational interactions are considered 

using a linearized theory. 

Within a comoving system of coordinates the uniform fluid of the cosmologi- 

cal models is in a hydrodynamic stationary state. A system in a stationary state 

is unstable when a small dis turbace grows in time and leads to a changed con- 

figuration of the system. Thus, if one or more modes is time-growing, and the 

characteristic growth time is short compared with the lifetime of the system, the 

system is unstable.' According to hypothesis B the universe is an unstable 

system. 

Planets, s tars ,  stellar associations and clusters, galaxies, galactic clusters, 

......, form a hierarchy of perturbations in which the amplitude diminishes as its 

spatial extent increases. It follows that a linearized treatment is most valid for 

5 



fluctuations extending over extreme distances; that is for the lower vibration 

modes of the universe. A s  we go back in time the hierarchy of celestial objects 

dissolves into the increasing mean density of the universe, and the amplitude of 

all perturbations relative to the mean density diminishes. At a sufficiently early 

epoch, according to hypothesis B, the contrast density (ratio of the perturbation 

in density and unperturbed density) is small enough for a linear treatment. It 

follows therefore that a linear gravitational theory is cosmological in the sense 

that it is limited to small contrast densities, either remote in time, or extend- 

ing over cosmic distances. 

If the universe is unstable only for long wavelength perturbations we might 

conjecture with Jeans that there is a process of fragmentationg 'of nebulae out 

of chaos, of stars out of nebulae, . . . . . .,' and so on. Protogalaxies, or larger 

masses, first form because the universe is unstable. Regions of enhanced density, 

in which matter no longer expands with the universe, provide an environment 

more favourable for the formation of smaller condensations. Inhomogeneity, 

anisotropy, and complex properties of the fluid develop. No  longer limited to a 

linearized treatment, we a re  free to invoke all the cosmogonic paraphenalia of 

turbulence, magnetic fields, radiation, dust, and so forth. lo 

Alternatively, i f  the universe is unstable for short wavelengths we might 

conjecture with Layzer that there is a process of clustering, 11 whercby small 

condensations first form and subsequently interact to create larger and larger 

self-gravitating systems. The arguments in  favour of this process, howevcr, 

have not progressed very far nor have they gained wide acceptance. 

, 
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From the cosmological point of view the concepts of fragmentation and clus- 

tering a re  by no means mutually exclusive. The universe could be unstable for 

a large class of modes, or  a wide spectrum of wavelengths, anc! the rate of growth 

of the different wavelengths determines whether elementary structure evolves 

by fragmentation or clustering, or by both processes acting simultzneously. Con- 

ceivably, early population IJ. stars evolve out of inhomogeneities laid down either 

prior to or at the same time as those leading to galactic structure. All this, 

however, is speculation and we must wait for cosmology to give a clear and re- 

liable account of the origin of structure in the universe. 

3. NEWTONIAN COSMOLOGY 

3.1 Newtonian Models 

In 1934 McCrea and Milnel** l3 used Newtonian theory to derive the equations 

of a universe obeying the cosmological principal.* It is assumed, as in general 

relativity, that in the unperturbed state there is everywhere a perfect fluid of 

uniform mass density p and isotropic pressure p. The equations are identical 

with those derived using general relativity theory, provided the pressure is negli- 

gible in comparison with the energy density p c 2  ( c  is the speed of light). Several 

authors 14- l8 have discussed the validity and limitations of Newtonian cosmology. 

A s  we shall show, the equations of Newtonian and general relativity theory 

for the perturbed state a re  similar when the pressure is negligible. The ad- 

vantage of the Newtonian treatment is its simplicity; furthermore, it provides 

physical insight which helps to reduce the general relativity equations to their 

simplest form. Before proceeding to the Newtonian equations of a universe in a 

perturbed state, the treatment for the unperturbed state is presented briefly. 
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Let r be the position at time to  of any element of fluid. At time t ,  let the 

position of the same fluid element be (S/s,) r, where s(t) is a universal function 

of time and So = S(t,). This condition ensures that the fluid density P re- 

mains uniform and is a function only of time. Thus r is a comoving position 

vector and r ,  8, 6 are  comoving spherical coordinates. The velocity and accel- 

eration of a fluid element are 

c 

where dots denote time differentiation. Within the comoving coordinate system 

the ordinary gradient operator V’ transforms to (So / s ) V .  

The equations of motion, continuity, and Poissions equation, a r e  

S du 1 - - =-o$J* - _  V p ,  
So d t  P 

(S0/S)2 v2+* = 4 n G p  - A ,  

where p is the pressure, C the gravitational constant, and +* the gravitational 

potential. The cosmological term A is included for historical interest. In a 

uniform universe the V p  term in (2) vanishes. Using (l), and taking the diver- 

gence of (2),  it follows that 

. 



3 S +  ( 4 v G p - A ) S = O .  

From the equation of continuity (3), 

pS3 = c o n s t a n t ,  

and hence (5) can be integrated and becomes 

(7 ) - 1  S2 = - ( 8 7 ~ C p  + h)S2 - - K  

3 

A universal constant of integration C is absorbed by the transformation: S -+S I C I ’’’ ; 
and S has now the dimension of time and K has the value of 1 , 0, or  -1. 

Equations (6) and (7) are the Newtonian equations of an isotropic and homo- 

geneous universe. Furthermore, if  

the equations are 

R2 = - ( 8 n G p  - A)R2 - KC’ 

3 

pR3 = c o n s t a n t ,  (9) 

which are identical with those usually derived with general relativity, when the 

pressure is small compared with the energy density pc’. (First derived by 
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Friedmann for p = 0, andl9 K = 1 and20 K = -1.) The velocity of light is an alien 

intruder in Newtonian hydrodynamics and therefore we keep to (6) and (7) for the 

present. 

Using the constant 

the solutions of (6) and (7) a r e  

K = 0: s = f i x 2 ,  

2 
K = 1: S - P  s i n  x ,  

K z - 1: S = p s i n h 2  y ,  

and t(x) is found by integrating 

d t  = 2Sdx.  

Within a sphere of radius r the potential energy is 

and the kinetic energy is 

10 



where E = R 

total energy is zero when K = 0. 

T is the total energy and A = 0. From {14): E = - K T / S ?  and the 

The advantage of the Newtonian equations is the ease with which they can be 

physically interpreted. Thus, assuming A = 0, when K = 0, E = 0, the fluid ele- 

ments have velocities equal to their escape velocity and their trajectories a r e  

of the parabolic class; and for K = 1 ( K = -l), E < 0 ( E  > 0 ) ,  the fluid elements 

have velocities less (more) than their escape velocity and their trajectories a r e  

of the elliptical (hyperbolic) class. These interpretations a re  less obvious when 

(8) and (9) a r e  derived from general relativity. In that case K is the curvature 

constant and space is flat ( K = 0 ) ,  spherical or elliptical ( K = l), and hyperbolic 

( K =  -1). 

3.2 Perturbed Newtonian Models 

Varinus a~ i thors*~-  29 have used Newtonian gravitational theory to study the 

time dependence of density fluctuations in a uniform fluid of finite or infinite 

extension. From the cosmological point of view a Newtonian treatment is scarcely 

adequate; not only is i t  limited to low density, but also the long wavelength modes 

of Euclidean space are inapplicable in  curved space. Fluctuations at high density 

and large-scale fluctuations at low density are the conditions for which the linear 

theory is most valid but the Newtonian approach is least valid. Nevertheless, 

the simplicity of the Newtonian approach serves as  a valuable guide in the sub- 

sequent treatment, and so far as the author is aware, it has not been previously 

developed in comoving coordinates. 

11 



For a collisionless fluid, such as a supergas of s tars  or galaxies, the formal 

approach is by way of the Vlasov equationsYm as in plasma physics. This has 

been used by Gilbert:' and by Sweet3' for counter-streaming fluids. Particles 

travelling an appreciable fraction of a wavelength in an oscillation period cause 

Landau damping. Since we a r e  concerned with an initially structureless fluid we 

shall use the fluid approximation; this will tend to overestimate the rate of growth 

of perturbations. In this discussion the velocity components a r e  everywhere single- 

valued, and only gravitational interactions are considered. 

Let the disturbed velocity, density, pressure, and gravitational potential be 

u - u t v ,  P - P +  ZP?  

P - P  t SP, $* - $* t $J, 

where the small  quantities are functions of r and t . In the usual coordinates t , 

r S/s, the linearized equations of motion and continuity are 

1 t U.V' v t v . 0 '  u + 0' $J t -V' SP = 0, (: ) P 

and terms quadratic in small quantities are neglected. The perturbation of 

Poission's equation is 

12  
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The transformation to comoving coordinates is 

where the time derivative now follows the unperturbed motion of the fluid. In 

ordinary coordinates ;3 I" t commutes with V' , whereas in comoving coordinates: 

d d - v = v - .  
d t  d t  

With the use of comoving coordinates, (15) - (17) become 

S d t  

Si V 2 $ - 4 - r r G S 2 b p =  0, 

where V * u = 3s /so, v - Vu = v S/So , and ps3 = constant. 

13 



Taking the curl of (18), we have 

where V'AV =I is the vorticity. Hence is conserved. In the absence of 

pressure and density gradients both v and 

permanently zero and the motion is irrotational: 

are zero. The vorticity is therefore 

For the four unknowns 6p, 6 p ,  +, and cp, there are the three equations (18) - (20). 

An equation of state is therefore necessary. Let pa py, where y is the ratio of 

specific heats, then 

and c ,  is the speed of sound. Taking the divergence of (18) and using (19), we 

find 

It is now possible to write IC, = $( t )  II ( r r  e,+), and 

V211 + k2 TI = 0, 

14 



where k2 is the separation constant. With (5) and (7), Equation (24) becomes 

1 d  - - ( S $ )  = 471cp(p, 
S d t  

and dots denote time derivatives. The remaining two equations are 

(27) 

The last three equations determine the fluctuations of density, velocity, and 

gravitational potential for an inviscid, irrotational fluid. They are  identical with 

those obtained in Section 5.5 from the theory of general relativity for ct << c 2 .  

3.3 Normal Modes of Vibration 

An arbitrary disturbance in a scalar quantity consists of a superposition 

of normal modes given by (25). These modes can be constructed from plane 

waves 

IIk oc exp i k - r 

The modes in spherical coordinates a re  given for  comparison with those in Sec- 

tion 5.7 for curved space. 

15 



c 

Let n = Y ( r ) @ ( d ) @ ( @ ) ;  by separating the variables, Equation (25) in flat 

space becomes 

d2 @ 
- + m 2 @  = 0,  
d 42 

(29) 

The tesseral harmonics of n th degree and nth order are 

0 @ = q ( U ,  4) = (anm e'"'+ + bnm e-im4) PK ( c o s  O ) ,  

for integral values of n and m ,  and the spherical surface harmonics of degree n 

are 

The solutions for the radial function y ( r ) ,  for n integral, are the spherical 

Bessel functions 

16 



There are no boundary or periodic conditions to satisfy, and the only condition 

is that 9 must be finite everywhere. For k r  -+ 0,  

Yn -+ (kr )" / [1 .3 .5  . . . .  (2n t 1 ) l ,  

- [ 1 .3 .5 . .  . . ( 2 n  - 1)  I /(k r ) n + l ,  'y- n 

and kr -CD, 

Yn - (kr)-' C O S  

and hence Y-n is rejected since it diverges as k r - 0. The radial functions form 

a continuous set  having all eigenvalues of k > 0 for each value of n . In particular, 

for  n = 1, 2, and 3:  

I, = (kr)-' [ (kr ) - '  & - c], 

Y, = (kr)-l  [{3(kr)-2 - I }  h - 3(kr)-' C], 

( 3 3 ) .  

17 



d = s i n  kr, C = c o s  k r. The spatial disturbances a re  represented by summations 

and integrations over the complete set  of wave functions 

4. GRAVITATIONAL INSTABILITY 

4.1 General Criteria 

Let 

The existence of time growing modes of an arbitrary quantity such as a, does 

not necessarily imply instability in a nonstatic universe. For example, if ao= 8p 

grows, an expanding universe is unstable, but a contracting universe is stable 

i f  p increases more rapidly than 8p.  The only time growing quantity that denotes 

unambiguously a changing configuration is the contrast density a3 = Z p / p .  Sup- 

pose that a, grows in time; then in an expanding (contracting) universe m = 3 is 

necessary and m ,< 3 ( m  >, 3) is sufficient for instability. Thus the growth of the 

gravitational potential (27) = $ a a2 , is sufficient only for instability in an ex- 

panding universe. 

When the growth time of a mode is greater than the age of the universe i t  

cannot contribute to a significant change in configuration. For instability we 

require 

18 



or, if  u s**' (+d for S > 0, - t f o r  S o ) ,  3 

Even then a clear case of instability requires an adequate amplitude of the initial 

disturbance. For arbitrarily small initial conditions a clear case of incipient 

instability requires a3 K exp L t, o >> IS / S  I .  

The Newtonian equations of the unperturbed cosmological models, and the 

linearized Newtonian equations of the perturbed models, a r e  identical with the 

corresponding general relativity equations for small pressure. The Newtonian 

equations a re  limited to flat space and cannot be used to determine the behaviour 

of modes in curved space. This is not a severe limitation as  the eigenvalt.es k 

in ( 2 6 )  are multiplied by the speed of sound c s ,  and the time dependence of a, 

CZG b2: &cuss& fer 9 giyer? l.~rrln~ nf kc, - 

From (26 )  the general equation for am is 

( 3 8 )  
.. s -  t ( 8 - 2 m ) - a  m t a , = O ,  

S m 

where K = c,k S,/s.  Equation ( 2 6 )  is for m = 2; and for m = 3:  

19 
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This equation has been derived by Bonn01-24 and van Albada2’ for radial type 

perturbations and has been discussed more generally by Savedoff and Vila.27 

From (27) the velocity potential is given by 

L3 t (pk2 SZ,/S2 = 0 .  

For m = 4, 

Unless stated otherwise we shall assume that the cosmological term A is 

zero. When 

u4 is oscillatory, and hence a,,, is also oscillatory for all m.  For K = 0 (zero 

energy) this condition is c2 > ( S K  / 

exceeds the expansion or contraction velocity (1) at distance 5 .  

, where A 1 k - l ,  and the velocity of sound 

Since pa  py, it follows 

c; = c2,, - 

or K2 = Ki ( S , / S )  3 y -  ‘where K, = cs,k at s = s,. Equation (41) is now 

(43 1 
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This eauation is useful for discussing qualitatively the behaviour of am as a 

function of time. So far So is arbitrary; let S = K: at So  = p / S 3  or cy 

. 

and (44) becomes 

3 Y  - 4 .. 
a4 t [ ( S o  I S )  - 13 ( W S ) 3  a4 = 0 

Hence, a4 has marginal stability a t  S = So. The results a r e  shown in Table 1. 

In an expanding (contracting) universe am is a growing function of time for rn > 4 

(m < 4) for all y. More precise conditions are given in Section 4.3 from the 

solutions of (38). At this stage we are unable to deduce any conditions concern- 

ing the growth of the contrast density (m = 3) in the important case of an expand- 

izg I ~ p ) T ~ O _ I . v D _ *  

A marginal state for any value of m is obtained by using 

in (38): 

.. 
S 
S 

t (6 - m )  - + (m - 4 ) ( m  - 3) 

For rn = 3 ,  this is van A l b a d a ' ~ * ~  equation 

21 



TABLE 1 

Time Dependence of a,,, 

The symbols denote: s > 0, expansion; S < O ,  contraction; T , growth; I , 

decay; -, oscillating; without brackets, s > So; with brackets, S <so. For 

example: (-1) means decaying oscillation for S < So. 

, 
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and therefore, Jeans' criterion of marginal 'stability': K2 = 4nC p, holds for 

a3 ( E ) .  However, E is not a linear function of time, and in general this marginal 

state does not give an unequivocal stability criterion. 

4.2 Jeans' Criterion 

Jeans' treatment2' of gravitational instability resembles Lord Rayleigh's 

formulation of the problem of oscillations in a fluid of positive and negative 

charges.32 Jeans assumes that a uniform, gravitating fluid is in a stationary 

state (as for a neutral plasma) and S = 0. Hence (39) becomes 

and S = So. For a3 cc exp i w t  this equation gives the dispersion relation 

A similar relation holds for electrostatic oscillations in a plasma, and up = ( 4 ~ n e ~ / m ) " ~  

is the plasma frequency for electrons of number density n and charge to mass 

ratio e / m .  In Jeans' dispersion relation the 'gravitational frequency' is imaginary: 

w = ( -4ncp)1/2.  There is thus a marginal state 
P 

1/2, k = ( 4 n G p / c ; )  J 

and for k > kJ, w is real and the disturbance oscillates at constant amplitude; 

and for k < k 

Jeans' stability criterion is therefore k > kJ, or h < KJ, where K = k - '  , KJ = k;' . 
The Debye length ?$, = cs/up plays a similar role in plasma physics and 

w is imaginary and the disturbance grows exponentially in time. 
J' 
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C 

4 

disturbances of it < A D  in many cases tend to be stable. In a Jeans' sphere (as 

compared with a Debye sphere) of radius A, the sum of the thermal and potential 

energies is of the order c: ,OK: - ~ - I T G , O ~ K ; = O .  In a sphere of radius K < h J ,  the 

thermal energy predominates and collective interactions a re  of little consequence. 

Jeans' analysis suffers from the defect that in general there is no initial 

stationary state in a uniform nonrotating fluid. When K << KJ then m2 >> S2/S2, 

and the dispersion relation (49) is an acceptable approximation. But as A increases, 

the oscillation period also increases and is infinite at K = A ; and when if > KJ, the 

e-folding time 

of the system. Thus, in the range of interest: K 2 K 

(49) fails and we must fall back on solving (39). It is seen that Jeans' instability 

criterion: K > kJ , is necessary for expansion (S  > 0) and is sufficient for con- 

traction (S < 0), but in neither case is i t  both necessary and sufficient. 

J 

of a disturbance is comparable with the collapse time i (2/3)1/2~;1 

J '  
the dispersion relation 

In Einstein's static universe (which has its analogy in Newtonian theory,* 

provided p << pc2): S = 0, S = 0, a t  S = so, and according to (5) and (7) this is 

possible for K = 1 and 

A = Si2 = 4 n G p o  

Equation (38) for  a, becomes 

where p stands for a,, $I or 9 .  A s  Bonnor 24 has shown, Jeans' dispersion re- 

lation (49) holds true without modification in Einstein's static universe. The 
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cosmological term neutralizes the gravitational field and €here is a similarity 

with the neutral plasma state. If the pressure is zero, as in a fluid consisting of 

dust particles having no peculiar motion of their own, the velocity of sound is 

zero and all modes grow as exp A l l 2  t .  

4.3 General Equations 

To solve (38) we use the relations (11) and (12) and take x a s  the independent 

variable. For K = 0 (zero energy). 

K = 1 (negative energy): 

(m - 2)(m - 9 / 2 )  y s i n  x) - (rn - 4)(m - 3) t t (14 - 4rn)cot x - 
dX sin2 x 

d2 a, 

dx2 

6 Y - 6 .  
L ( s i n  X) = ~2 P 2 ( s i n  >( ) 6 Y - - s i n  X) 

0 0 

and for  K = -1 (positive energy): 

(54) 

a, = 0 ,  1 - d2 a (m - 2) (m - 9 / 2 )  
s inh2  x 

d a m  + (14 - 4 m ) c o t h ~ -  t 4 
dX2 dX 

m t(rn-4)(m-3) t 
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These equations a r e  used to consider the growth rates in (i) a cold universe, 

(ii) an isothermal universe ( y = l), and in the cases when (iii) y = 4/3, and (iv) 

y = 5/3. 

L 

4.4 Cold Universe 

If the pressure is zero, as in a universe containing dust particles having no 

peculiar motion of their own, all time growing perturbations have their maximum 

possible rate of growth. A cold universe is the most unstable of all,  and is not 

only a very simple but is also a very interesting model to study. In this model 

KO = 0 in (53)-(55). 

For K = 0 (zero energy) the solution of (53) is 

A ,  B a re  constants. Hence, during expansion (S > O ) , C ,  is either constant or 

decays, and during contraction (s  < O ) , U ~ , ~  is either constant or decays. For 

S > 0 ( S  < 0), a, grows for m > 2 (m 9/2). Using only the growing terms 

S > o :  8 p / p a  s a P - ' ' ~  , 

and these growths a re  the same for all modes. 

The absence of exponential growth is typical of all non-static models. Ac- 
e 

3 

2 
cording to (36) neither X = 1 ( expansion) nor 4 = - (contraction) satisfy the 
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condition (37): 4, >> 1, for a convincing case of instability. Because the universe 

is expanding the result 4, = 1 is of particular interest. It shows that during the 

life-span of the universe in which the Newtonian theory is valid small initial 

disturbances tend to remain small. For example, i f  initially p, ru 1 g cm-3 and 

6 p l / p ,  % , then at p % g ~ 1 2 1 ' ~  it follows that 6 p / p - 1 0 - 5 .  

In the K = 1 (negative energy) or oscillating model the solution of (54) is 

a m = ( s i n  x)2m-7 [AP: ( i  c o t  x) t B Qi ( i  cot x ) ] ,  (57) 

where 0 5 x _<_ 77, A and B a r e  different constants, and Ptf, QE are the associated 

Lengendre functions. Since P: ( - i  x)= -Pi ( i  x ) ,  Qi  (-i x) = Q: ( i  x), we need 

consider only the range 0 5 x 5 - n.. Using the relations33 1 
2 

Pi ( i x )  = - 3(1 + x2)'I2 x, 

Qi ( i x )  = i ( 1  t x2)ll2 [3x cot- '  x - (3x2 t 2) / (1  t x2)l  , 

(57) becomes 

a m ~ & 2 m - 9  [AC t B ( 3 d  - P 3  - 3 y C ) I ,  

A = s i n  x, C = C O S  x. As x 4 0, this equation is identical with (56). 

In the K = -1 (positive energy) model the solution of (55) is 

a, = ( s i n h  x ) ~ ~ - ~  [AP; ( c o t h  x) t BQ: ( c o t h  x ) ] .  (59) 
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From the expressions (x > 1) 

Pi  (x) = 3(x2 - 1)1'2 x, 

x t  1 3x2 - 2  
x - 1  x 2 - 1  

Qi (x) = (x2 - 1) l l2  x 8 n  - - 
L J 

i t  is found 

S = s i n h x ,  C = c o s h x -  AS 

~ ~ 2 m - 8  + ~ ~ 2 m - 6  , and in an expanding (contracting) universe a, grows for m > 3 

(m ~ 4 ) .  

- 0, (56) is recovered; however, as +a, U, = 

The solutions (56), (58), and (60), for u3 = 6p/p, a re  shown in Figure 1 with 

the constants A and B equal to unity. In an expanding universe the growth is 

least, as one would expect, in the case of positive energy of K = -1. The rate 

of growth is greatest for K = 1, but the growth is limited because the universe 

oscillates. 

4.5 Isothermal Universe 

Under certain conditions it is possible for a fluid to expand and contract 

isothermally?2 

density to be cooled by radiation, thus tending to make the fluctuations isothermal. 

Wheny = 1, the L ' s  in (53)-(55) equal ( c s k ~ o ) 2 .  At S = S o ,  let 

Furthermore, i t  may be possible for regions of increased 



\ 
1 I \  I I I I I I I - 10’ 

- 
- 
- 
- 

Figure 1-Curves increasing from left to right show the growth in amplitude of Sp/p for 
K =0, k1 in an expanding cold universe. Curves increasing from right t o  left show the 
corresponding growth in amplitude in a contracting cold universe. 
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Then, for  K = 0, (cso  k So)2 = P / S o ,  and 

and therefore 

S << So : a, - - A p - 9 / 2  B 9 - 2  

m-7/2 S >> So : a, = S . . [ A s i n  2(S/S,)'/2 t B c o s  2(S/S0)1/2 1 

At  high density or  long wavelengths u behaves as in the cold universe, and at  

low density o r  short wavelengths a7,,2 oscillates. 

m 

For K = 1, 

and K = -1, 

Y2 where A = - 1/2 &(l + 4 K c:o k2 S,2) = - 1/2 f (5 + 4 K Si)" and So occurs at 

So. When 2csokSo < 1, these equations are similar to those of the cold model, 

and when 2csokSo > 1 they resemble the zero curvature solution (62). Savedoff 

and Vi lan  have derived results similar to (63) and (64) in terms of hypergeo- 

metric functions. 
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4.6 Arbitrary y 

The general solution of (53) for K = 0 and y arbitrary is 

2 - 3 7 / 2  
) *  a, a !3"-l3l4 J,, (2  [S/SoI 

P = 5/2(4 - 3 Y), 

where (61) holds at s = so ; and for y = 4/3, 

a,m S m A  - 13/4 

( 25 
A =  -- 3ci0 k2 

and cs0 is the speed of sound at density p, . Froiii (65) 

I 4 
3 

Y > - , s >> so: 

4 
3 

Y < - , s >> so: a, = s ~ - ~ - ~ ~ / ~  (A s i n  x t B C O S  x), 

4 
> - 3 , S << So: a,,, = Sm+n-13/4 (A s i n  x t B c o s  x), (68) 
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where n = 1 - 3/4y, x 2 2 ( S / S 0 )  2 - 3 y / 2 .  The general solution has been given by 

Savedoff and Vila.27 

A photon, neutrino, or relativistic gas has a ratio of specific heats of 4/3. 

When the pressure of such gases is dominant but their density is small com- 

pared with the total density of the fluid, the fluid as a whole has ' y  = 4/3 and can 

be treated with the Newtonian approximation. When ( K = 0) 

a oscillates: 
13/4 

where i p = A in (66). In the case of K = *l 

am = Sm - 'I2[ APi( i  cot  K y) t BQ1 h ( i  cot  K x ) ]  , 

and 

p i ,  Qiare  nonperiodic for condition (69). 

When y = 5/3, K = 0, (65) is 



(dr2 t r2 d t12), RZ ds2 = d t 2  - 

as shown by van Albada? 

K = hl for arbitrary y , nor is there in the important case of y = 5/3. 

There appears to be no simple analytic solutions for  

5. RELATIVISTIC COSMOLOGY 

5.1 Unperturbed Models 

In its unperturbed state we assume that the universe is homogeneous and 

isotropic, and the metric is given by the Robertson-Walker line element 

(73) 

where do2 z dB2 t sin26 d @ , r,  e, 6 are comoving coordinates, R (  t )  has the 

dimensions of length, and K = 0, &1 is the curvature constant. The energy- 

momentum tensor of a perfect fluid is 

Ti = (pc2 t p) gkj uk ui - 6; p ,  (74) 

in which pc2 is the energy density, ui the four velocity, and p is the isotropic 

pressure. For a fluid that is stationary in the comoving system, t i o  = 1, 

u1 = u2 = u3 = 0, and the components of the energy-momentum tensor a re  
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, 

All that now remains is to determine R(  t )  in (73) with the Einstein equation 

In this equation, R i  is the contracted Riemann-Christoffel or Ricci tensor (its 

further contraction RX is shown explicitly to avoid confusion with ~ ( t ) ) ,  and the 

cosmological term A is included as in the Newtonian treatment for historical 

interest . 

.e 

Equation (76) is readily solved using the line-element (73) and the com- 

ponents (75) of the energy-momentum tensor.'. 34 

is particularly simple. Transforming to the coordinates: 

The following method however 

x = r sin 8 COS 4, 

y = r sin 8 sin 4,  

z = r C O S  8 ,  

r2 = x2 t y2 t 2 2  , the line element (73) in the immediate neighborhood of r = 0 

becomes 

r -7 
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At any desired point r = 0 the coordinates are 

metric. For these coordinates the Christoffel symbols 

as in the Minkowski 

are* 

A s  r -, 0, the only surviving Christoffel symbols are r:a and rosa, and the spatial 

derivatives of (78) are 

Since 

*The convention adopted i s  that Latin indices assume all values 0,1,2,3: Greek indices A, p,  I/ 
assume only the values 1,2,3, and a, P I  y a r e  used when there i s  no summation and a? ,!3 FY. 
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we find from Ri = gik q, that 
1 

R: = 3 R / R ,  

RZ = ( R R  t 2R2 t ~ K C ~ ) / R * ,  

and all other components vanish. From (76) we now obtain the well-known 

equations 

d P dR3 
d t  c2 d t  
- (R3 p) t - - = 0. (83) 

Every observer can adjust the origin of his comoving coordinate system to give 

r = 0, and therefore (82) - (83) apply to all comoving observers. Equations (82)- 

(83) are identical with (6)-(7), provided R = CS and p/c2  is vanishingly small. In 

the relativistic treatment we shall use R rather than S .  

5.2 Equation of State 

We have two equations, (82) and (83), for R , p , and P , and therefore require 

an equation of state: 

p = ( v  - 1) pc2.  
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I -  

In any range of density in which v is constant, (83) becomes 

pR3u = c o n s t a n t .  

If, now 

(82) can be written as 

i2 = pv R2-3u .+ A R2 - K c 2 .  
3 

For the three models K = 0, 1, -1, and A = 0 ,  it is found that 

where 

37 



In the relativistic treatment the pressure contributes to the mass density of 

the fluid. If the kinetic and non-gravitational interaction energies of the con- 

stituent particles of the fluid are small compared with the particle res t  masses, 

as in the universe in its present state, there is justification for assuming v = 1 

as in the Newtonian theory. However, there is no justification for assuming that 

the pressure gradients in a perturbed universe of p << pc2 a r e  also of negligible 

effect. If, at low density, instead of (84) we adopt 

sp = (u - 1) c2 6p - 

where 6 p =  c i  6 p ,  then 

(90) v = 1 -t c 2 / c 2  = 1 t yp/pc2 ,  

and c', << c2. In an isotropic photon or neutrino gas, or in an isotropic fluid in 

which the particles and their fields have energies large compared with the res t  

masses, v attains its maximum value36 of 4/3 and p = - pc2. The range of v 

is therefore 1 

to 2, but i t  is possible that this is unrealistic38 

limit of -2 as a physical explanation of a steady state universe, but this is out- 

side the scope of our discussion.) 

1 
3 

u 5 4/3. (Zel'dovitch3' has proposed increasing the upper limit 

McCrea39 suggests a lower 

In the case of a gas containing degenerate electrons, the electrons a r e  rela- 

tivistic when their Fermi energy E, exceeds m,c2 (me is the electron mass). But40 

3% 



‘e 

ae ae 

1/3 A 
- ‘e = (f.) e,- 
me c2 

4 
3 

where ae is the mean interelectron distance: - va2ne = 1, ne the electron density, 

and he = h / m e c  the Compton wavelength. Hence, E, > m e c 2  occurs in hydrogen 

at p > 106g cm-3 , approximately. It is reasonable to suppose as  a first approxi- 

mation41 that the Fermi energy level is comparable with kT, where T is the 

temperature (in this section k is the Boltzmann constant). As the density rises,  

electromagnetic and weak interaction populate the photon and neutrino statesP2 

thus ensuring that the Fermi and thermal energies (after allowance for rest 

masses) of the fermions and bosons are of comparable magnitude. The leptons 

and photons contribute most of the pressure and yet contribute only a small 

fraction of the total energy pc2 of the fluid. Therefore (90) is used with y = 4/3. 

The lepton and photon energies become significant as the Feriiii energy zpproaehea 

m n c 2  (mn is the nucleon mass), and according to (91) this occurs for ae % A n ,  where 

A n  = h / m n c  (mn is the nucleon mass), or when p 10l6 g ~ m - ~ .  (The condition 

Ee % kT limits electron pair production and the number of electrons does not 

greatly differ from the number of nucleons. Inverse p decay:m’43 p + e- .+ n + v , 

which is of importance in stellar physics, plays only a minor role because of the 

dense neutrino-antineutrino background. The results of other studies p4 in which 

it is assumed that the temperature is low, are also inapplicable.) The density of 

nuclear matter is pn % 1015 g cm-3 . For p < pn the pressure in general is small 

compared with the energy density and v has a value close to unity. When p -., pn 

the composition of the fluid is complex, and at higher densities progressively 
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increases in complexity. However, whatever the nature of the fluid at super- 

nuclear density, it seems likely% that u will have a value close to 4/3. By these 

crude arguments it is possible to distinguish two states of the universe: 

subnuclear state: p < P,, 2 1, 

4 

3 
supernuclear state: p > p,, u - ,  

and in each of these states Z/ is roughly constant. The principal change in u 

occurs in the transition through nuclear density. 

Neglecting the transition region of u there are now altogether six models: 

Subnuclear-models. Z/ = 1. These have been previously given in (11)-(12), 

but are now repeated using (87)-(88): 

K = - I: R = ,6 c - ~  s i n  h2 x .  1 

and dt = 2 R d x / c .  

Supernuclear models. u = 4/3. Again, from (87)-(88): 
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1 / 2  
K = 0: R = P4/3 c- l  x ,  

1 / 2  
K = 1: R = P413 c - l  sin x ,  

1 / 2  K Z - 1 :  R =P4/ ,  c - l  sinh x, 

and d t  = R d x / c .  

(93 

The value of at the density pn is estimated in the following way. At 

present in the universe /3, % R o c 2  , and hence /34/3 % Rn ,Bl - Rn Ro C2 . Also, 

x - R n C / P 4 / 3 ,  'I2 and therefore 

n 

From the present density of po g cm-, it follows that x - . The 

supernuclear models (93), in which x < x , have therefore negligible difference 

and for simplicity we can assume K = 0. 

n 

n 

5.3 Linearized Equations of Perturbed Models 

We consider small departures from the metric (73) as the result of displace- 

ments of the fluid. A perturbation treatment of the cosmological models, as 

distinct from a static and flat metric,34* 45 encounters the slight complication of 

non-vanishing Christoffel symbols. The most general treatment has been given 

by Lifshitz@ and includes rotational motions and gravitational waves. Owing to 

the conditions imposed on the metric tensor, simple irrotational motions were 

excluded. The Newtonian approach shows us that in the simplest treatment 
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these are the motions of most inerest. A treatment of the problem, analogous 

to the Newtonian treatment of a uniform fluid, does not appear to have been pre- 

viously attempted in a simple and straightfoward manner. 

Small variations in the metric tensor a re  expressed a s  gjk + Sgjk , where 

the g j k  are given by (73) and 

6gjk = h j k .  (95) 

We assume h .  and its derivatives are everywhere small, and that quadratic and 

higher order terms in small quantities a re  negligible. Thus the unperturbed 

tensors gjk , gik are  used for lowering and raising the indices of hik, hjk : 

hi = gik h.  

space. Since gjk gik = 6 ;  , to a first order 

Ik 

= g. hik ,  and in effect hjk is a tensor field in the unperturbed gjk 
1 Jk Jk 

S(g.  gik)  = h i  + gjk 8gik = 0, 
i k  1 

and therefore 

Sg'k = - hi k (96) 

It is more convenient to use Einstein's equation (76) in the alternative form 

(97) R1 1 = - ( 8 . r r G / c 2 )  

and its  perturbation is 

S R i  = - ( 8 n G / c 2 ) 8  (Tj - -  1 8; T) 
2 
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The perturbation 6 Ri is evaluated in  terms of hi as follows. From (80) ,  

thus giving the Pa atini equation47 

(99) 
4 .e 

s R j k  = 6 r k t e ; j  - s r k j ; 8  * 

where a semicolon denotes covariant differentiation. Also, to a first order, 

6R1 J = 6(gik R j k )  = gik 6 R j k -  hi q, (100) 

and with (99), we obtain 

4 .e 
gik ( ~ ~ 4 ; ~  - 6rkj;t) = 6 ~ ;  tq q. 

The perturbed Christoffel symbols are  

t srfj  = s ( g t r  s(grJ;,) - Tj h s  
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thus giving Lifshitz's46 equation 

$ 1  .e In particular, 6 rk8 = - h; k ,  where h is the trace h4.  
2 

From (101)-(102) we have a linearized differential equation in h i :  

The gjk and Ri are known, and 6Ri is given by (98) in terms of the perturbed 

energy-momentum tensor. 

The trace of ~i is T = pc2 - 3p, and therefore 
1 

Furthermore, gkj ukuj=  1, and from 6(gkj uk u ' )  = 0, 

h . uk uj  + gkj 8uk uJ t. gkj  uk 6 u j  = 0 
k l  

where UO = 1, UP = 0, and therefore 

h t  t 2 u0 6u0  = 0. 



6 ( g k j  U k U i )  = 6'  ho t 8; Uo 6U' + gkj 6Uk 8; Uo 
O J  

We therefore find, from (74) 

From (105) and (106) it follows that the components of 6Tj  are 

ST: = c2 Sp, 

8 5  = 0 ,  

where arb= 1, 2, or 3, a # P ,  and no summation. From (98), (104), and (lo?), we 

now have 
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6R: = -476  S(p t 3 p / c 2 ) ,  

and 6 R i  = 0. In addition, the components of R i  a r e  

R: = - 4 n C  (p  t 3p/c2 )  t A ,  

RZ = 47rC (p  - p/c2)  t A .  

Collecting together the equations (103), (108), and (log),  we have, for i = j = 0: 

(110) 4 
h,oo  - 2 ho; o4 t h:; 8, = - 8 n C  (h: t 8 )  ( p  t 3p/c2)  t 2h: A ;  

for i = 0 ,  j = a ,  (a= 1, 2,  or 3; no summation over a): 

4 4 
h;ija -h0; ,8-hcz;o4 + g4mh;;4,-,, 

46 



l 

g a Y ( h ; a a - 2 h f ; a x )  + g X m  h z ; t m  = 877C(hz t 6 )  (p-p/c2)  t 2 h z  A ;  (112) 

and for i 1 a ,  j = j3, ( a  # p ) :  

Altogether, (110)-(113) provide ten equations for the determination of the ten 

unknowns: h k j  (four component's can be discarded by coordinate transformations), 

sua (since suo  = - 1/2 h:), and 6p (6p is given by an equation of state). 

5.4 Irrotational Motion 

For irrotational motion it can be shown that (110)-(113) reduce to three 

equations determining $ J ~  cp, sp, as in the Newtonian treatment. 

The simplest procedure is to transform to local coordinates where the 

Christoffel symbols are given by (78). In addition, we adopt a system of coordi- 

nates in which 

hOa = 0 ,  

and 

47 



The only equation involving the velocity sua is (111). This equation now becomes 

where g,, xua = v, . For irrotational motion v a i P  = vP;,, or 

v, = a q i C 2  ax,, 

and this is possible when the left-hand side of (116) is a derivaLJe with respect 

to xa. Hence, Ba = a B / a x a ;  and since Bcan be absorbed into cp, we assume 0 = 0. 

Equation (113) is now 

For ( 1) we take i = 0, j = a,  and subtract i = 0, j = p:  
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where o2 is the d'Alembertian operator. From 

seen that h i  and hz - h$ are  propogated independent of any fluid perturbation. 

Since h i  and h: - h$ are zero in the absence of perturbations, and we require 

only those hi which result from fluid disturbances, we can choose coordinates 

in which h; = 0, hz = h$. Thus, all nondiagonal components of hi a r e  zero, and 

h; = 0, Ai (hz - hg) = 0, it is 

The factor 2 ~ - ~  is chosen so that $ is equivalent to the gravitational potential of 

Newtonian theory. For small irrotational fluid disturbances the line element is 

therefore 

R2 (1 - 2 4 ~ c - ~ )  
ds2  = (1 t 2 *)dt2 - (dr2 t r2 dR2) .  (119) 

.7 f .  1 J 2  

c- \ l + T K  ' -1  
\ c2 ,  

A transformation of the coordinates xi + x' = xi t e i ,  where e i  are small 

quantities, leads to gjk t y j ,  , where 

yjk h .  - E .  1k j ; k  - 'k; j 

The line element (119) is unchanged with the Killing equation48 

49 



From 

it is found dEO/ds = dEO/dt = 0. Also, for 6u" to remain unchanged, de"/dt= 0. 

Clearly, these conditions a re  not limited to infinitesimal transformations, and 

any x i  - x' leading to $ ( x i )  + $' (x' i ,  is admissable 

5.5 Equations of Irrotational Motion 

With the line element (119), the only surviving equations of (110)-(113) are  

4 R R - ' $ t  4 ( R R - '  t 2 R 2 R - 2 ) $ t  /J*$= 4 7 ~ G ( 2 $ - ~ ~ 8 ) ( p - p P / ~ ~ ) t 2 $ A , ( 1 2 1 )  

These equations a re  obtained either by working through the covariant differentia- 

tions, or more simply using local coordinates. The results have been checked 

with Dingle's49 formulae for an orthogonal line element. With 

50 



. 
(12 0)- (121) become 

4 n C  6p = $ t 4 R R - '  $i t ( 2 R R  + R2 - K C ~ )  4. (124) 

The fluid motions are therefore parallel to the pressure and density gradients. 

With p - (v-1) pc2 for constant v, we obtain from (123)-(124) 

At subnuclear density v = 1 + c f / c 2 ,  cf << c z ,  and therefore 

$ t 4- R 6 t [(Gr - 2 t A] $ = 0 ,  
R R2 

since 2 R R + R 2  = AR* - 

result (26) with the transformations R -, C S  and k 2  + k2 Si /c2.  Because 6p = c: 60, 

it follows from (124) and (126) that 

c2 .  This equation is identical with the Newtonian 
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which is Poisson's equation. Thus, (122) with p = 0, (126) and (127) are the 

Newtonian equations (26)- (27). 

At supernuclear density v = 4/3, and from (125) 

. 

This equation is discussed in Section 5.8. 

5.6 Previous Work 

The problem of perturbed cosmological models has on the whole received 

scant attention in the theory of general relativity. The Newtonian approach to 

the problem is more popular in spite of its limitations. In the case of irrotational 

motion the two approaches lead however to identical results for relatively low 

pressure. 

Lanczos50 derives an equation similar to (103) and adopts a generalized 

de Donder coordinate condition 

(h i  -'Si h )  , = 0 ,  
2 ' ; J  
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. 

which is resembles (115) with 6, = 0, j a. However, a scalar wave equation of 

zero nondiagonal components hi , and h: = -hz = - - h , is impossible according 

to (128). The coordinate condition (128), commonly adopted in  the study of gravi- 

tational waves , 34 3 45 yields in general tensor wave equations. 

2 

IrvineS2 uses Lanczos’ equation and shows that for irregularities of scale 

length K, such that R << R , .X R/R << C ,  a n  approximate form of (103) is 

Also, when the fluid velocity is small compared with the velocity of light the 

principle component of (129) is 

In this approximation Ep/p, 6p/p, h;/K2, need not be small quantities. The results 

a r e  equivalent to the Newtonian results for small scale irregularities and p << p cz . 
1 
2 

For << -cz  , the Schwarzschild line element is 

d s z =  ( 1 t -  ::) d t 2  - (1 -$) (dr’ + rz d 0’). 

With this as an analogy McVittieS3 assumes that the line element is orthogonal 

and of the form (119) for a perturbed Einstein universe, and considers a universe 

of discrete condensations. By supposing in a linear treatment that $J depends 
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upon the entire mass of the condensations it was found that the volume of a static 

universe depends on the number of condensations. Modificationss4 were sub- 

sequently made in the treatment which showed that the volume was independent 

of disturbances. 

BonnorS6 has considered the growth of single condensations in the linear 

approximation for a pressure free fluid and has concluded that in an expanding 

universe the nebulae cannot have originated from infinitesimally small disturbances. 

The most general and elegant contribution to the subject has been made by 

L i f s h i t ~ . ~ ~  His basic equations are similar to (110)-(113). In general, coordinate 

transformations a re  possible which allow four of the h, to be zero. Which of 

the hkj are made zero determines to some extent the simplicity of the equations 

for a given physical problem. Lifshitz makes the choice hOj = 0. This choice 

is appropriate for complex disturbances containing rotational motion and gravi- 

tational waves, but the simplest of all disturbances - irrotational motions - are 

concealed within cumbersome equations that require tensorial spherical harmonics 

for their analysis. Lifshitz finds that all perturbations either decay or  grow 

very slowly in an expanding universe. 

5.7 Normal Modes of Vibration in Curved Space 

Using r ,  0 ,  4 coordinates in  

V 2  y5 t k2 y5 = 0 ,  

and separating the variables: IC, = $(t)  Y ( r )  Y; (0, 4), we find that only the radial 

function Y(r)  is different in the three cases K = 0, *l. 
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For spherical harmonics of degreen the radial equation is 

. We consider briefly the wavefunctions and eigenvalues 

46, 57 in a space of negative and positive curvature. 

For K = 1 let 

r d r  sin a = ; hence ,  d a  = 9 

1 l + - r 2  
4 

1 1 + - r 2  
4 

(133) 

and (132) becomes 

With Y = rI sin-'/2 a a s  the new variable, this equation is 

andh(h+  1) = k2 + 3/4. 
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For K = -1 let 

r ( sinh a = , ; hence ,  da = - 

and Y = r1 sinh-'I2 a; then (132) becomes 

1 d - - (sinh a $ )  + 
sinh a da 

andA(A + 1) = k2 - 3/4. 

r 
1 1 - - r 2  
4 

- (135) . I  

A ( A t  1) - (n "y]Il 0 ,  (136) 
- sinh2 a 

Let 5 = K ~ / ~  a ,  then both (134) and (136) can be expressed in the one equation 

where now h(X + 1) = K k2 + 3/4, or 

1 1 / 2  
A 1 , 2  - - -z + - (1 t K k2)  

The solutions of (137) a re  the associated Legendre functions P:(COS 5 ) ,  

Qt(cos  t), andp  = - t n, v = A. 1 
2 

56 



Positive curvature ( K  = 1). In this case i t  is more convenient to set 

k2 = y ( y t  1). (139) 

a 

or  P r  p~ , we use v = A,. Eecause 1 
2 

Hence, A,  = - +A; and since PE = P” 

p It v is an integer, but ,u is not an integer, we can use Pz and P;” as linearly 

independent solutions. 58 These are: 

- U - l ,  
1 2 

‘ + Y  2 

From the definition 

it is seen that as a -+ 0 (or r -, 0) 
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and as n is a positive integer, only Y;" is regular at the origin. Therefore 

- L - n  
2 ( c o s  a). v = a v - ~  = a s i n  p 1  

nY Y ny 
-tY 
2 

We have assumed that y i s  integral; it can be shown that this is necessary 

in order that 'I' is periodic or single valucd: 

'4';" (- C O S  a )  = c o s  (y- n)n '4';" ( c o s  a ) .  (143) 

1 Thus the wavefunction is symmetric (antisymmetric) about a = - 77,  or r = 2,  
2 

when y - n is an even (odd) integer. This has interesting consequences for ellipti- 

cal space: 0 I r 5 2 ,  and spherical space: 0 I r 5 m. The transformation: r - 4/r  , 

leaves the metric (73) unchanged.* It is therefore said59 that elliptical and 

spherical space a re  indistinguishable because 2 I_ r I co is merely a remapping 

of elliptical space. In a perturbed universe, however, elliptical space is not a 

mirror  image of 2 5 r 5 a for the antisymmetric wavefunctions, and therefore 

it would seem to be an inadequate model of the universe. 

For 11 = 0, 1, . . . y, 

- sin" a d n + l  [ c o s  (1 t y) a1 
Mn d ( cos  a)" f 

Y; -- 1 

. 

* 
But wi th  reversed parity. 
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It follows, for n = 0, 

0 - sin (1 t y) a Y -  
,Y (1 t y ) s i n a ’  

and for n = y ,  

YGy = (sin a)Y/(1.3.5 . - - - 2 y  t 1). 

Also 

2 y + 3  

Hence, the radial functions of the lowest modes a re  

= cos a, 

(145) 
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Y; = 1 - 4  sin2 a,  
3 

Y;' = 1 sin a cos a ,  
3 

1 
Y;2 = - sin* a, 

15 

"9 = C O S  a (1 - 2 sin2 a ) ,  

y<1 = 1 sin a (1 - 5 sin* a , 
3 5 ) 

1 
15 

= - cos a sin2 a,  

1 
10 5 

= - sin3 a. 

In a space of uniform positive curvature the eigenvalues a re  

k 2 = y ( y t 2 ) ,  ~ = 1 , 2 , 3 ; . -  

and m n 5 y. The fundamental mode has an eigenvalue of k = 3. 

6 0  

(149) 



Negative curvature ( K = -1). For the eigenvalues in this case we use 

k2 = y 2  t 1, (151) 

and from (138) A l ,  = -L f i Y .  Pip and QE are linearly dependent because 

p = -2- +n is half integral, and for the linearly independent solutions Pr and 
2 1 

P i p  are again chosen. Since P" = , we chose v = A,, and therefore 
A 1  

Y; = ( n / 2  s i n h a )  1/2 P1l2 + (cosh a), 
-1/2 + i y 

The hypergeometric expression 

(cosh a )  = pf (1/2 + n )  

-1/2 + i y 

is real, and a s  a -  0, 

f ( 1 / 2  + n )  

y? -+ - 
( s i n h a ) 1 / 2 r  (1 T (i tn)) , 

6 1  



and therefore only Y," is regular at  the origin. Thus, 

(cosh a ) ,  1 / 2  - n  Y;" = a . (742 sinh P- 
nlY - 1 / 2  + iy 

and because space is open, there a re  no periodic conditions to satisfy, and y 

can have any real value. 

For integral values of n ,  

sin h" a dn + 1 (cos y a )  

N n  d (cosh  " 
= 

(153) . 

and for n = 0, 

Y]s, = sin y a / y  sin h a ,  

n =  1, 

YY' = ( y 2  + I ) - '  (y c o t  y a - c o t h  a )  Y;, 

(155) 

and so forth. 

62 



I C  

~ 

. 

I .  

We have found that the eigenvalue spectra for K = 0, 1, and -1 are 

K =  1 :  k 2  = Y (Y t 2) 1 y = 1 , 2 , 3  - ' , 

and the lowest eigenvalues are k*= 0, 3, and 1, respectively. The eigenvalues 

form continuous spectra for zero and negative curvatures, and a discrete spec- 

trum for positive curvature. 

5.8 Time Dependence of Modes in Einstein's Static Universe 

From Section 5.1 we have 

(877Cp + A )  R 2  = 3 (R2 t K C * ) ,  

(11 - 8 . r r G p / c 2 ) R 2 = 2 R R t R 2  t K C 2 .  

In Einstein's static model R = R = 0 ,  K =  1, and therefore 

8 r G p  t A = 3 c 2 / R $ ,  

(157) 

A - 8.rrGp/c2 = c * / R ; .  
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With the equation of state p = (v - 1) pc2, it is found that 

A = c2  ( 3 v  - 2 ) / v R ; .  

Equations (125), (123), and (122), become 

(159) 

y t c2 ((v - 1) [k2 t 2 ( 3 v  - 2 )  v-l] - ( 3 v - 2 ) )  R i 2  $ = 0 ,  (160) 

4nGR; 6p = - [k2 - 3 t 2 ( 3 v  - 2 )  v"] $, 

$ = 4ncvpcp. 

The case of v -+ 1 has been considered in Section 4.2; we now consider a 

supernuclear model of v = 4/3. Equations (160)-(162) are therefore 

$ + ? A  3 [i y ( y  t 2 )  - 1 1 $ =  0 ,  

$ = 1 6 n G p c p / 3 ,  

in which k2 = y (y + 2) is used. The solutions are 

(16 5) 
I 
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# a  Spa  exp 5 i { S A  [ k y ( y  t 2) - g} 1’2 t . 

Thus all modes of y >  1 are oscillatory, and the fundamental mode y =  1 has a 

solution which grows linearly with time: 

SP = A t  t Bt“. 

If the Einstein universe were static for an indefinite period of time the linear 

growth of the fundamental mode would count as a serious instability. It is well 

known,60 however, that the Einstein universe is unstable against perturbations 

in R. Perturbing (157) and using the equilibrium equations (158) we find, to afirst 

order, = v A  6R. Therefore, 

and for v > 2 / 3 , 6 R  grows exponentially. Hence the growth of the fundamental 

mode (167) must be re-examined in a nonstatic universe. 

It was thought 53 that condensations in a static universe would increase the 

volume to V, + 6V,  thus launching the unstable universe on a career of expan- 

sion. Using the line element (119), we find 

6 V  = (3R:/c2) s i n 2  a s i n  @#(a,  8, 6) da d B d 6 ,  s 
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in the linear approximation, and therefore 8 v =  0. Thus, in the linear theory 

condensations do not guarantee that the Einstein universe evolves into an expand- 

ing Lemaitre model. 

5.9 Time Dependence of Modes in Nonstatic Models 

The time dependence of the modes for P << pc2  has been considered in Sec- 

tion 4, and here we shall consider only the supernuclear model of v = 4/3 and 

A = 0. The equations for # and 6p are  

4rCc2 6p = - 3RR" 4 - R-2 (k2 c2  - 3~ c2 + 3&) $J, (171) 

from (128) and (123). With the transformation (93), K = 0, these equations a r e  

- + - - - +  d2$J 4 d# (+k2-4K) $ = o ,  
dX2 X dX 

Because x is generally a small quantity (x I 10 - 8 ) ,  these equations a re  valid 

for K = 0, *l. In the supernuclear state there is no simple relation between $J 

and 6p. The solution of (172) is 
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s = (i k2 - 4 ~ ) ’ ~ ~ .  

For the low order modes s x  << 1, and for K = 0, %1 

$I = A t BR-3, 

(174) 

(175) 

where x R a t1I2 , and 

and A and B are different in the kvo c q ~ a ? i o ~ ~ s .  Thus  11 is either constant or 

diminishes in an expanding universe, and Sp/p increases linearly with time, or 

In general, 

We consider first flat space: K = 0 ,  s =k/v‘%, and assume that Sx >> 1. It follows 

67 



and Sp/p oscillates with constant amplitude during expansion and contraction. 

These equations, because of (94), hold for a wavelength R = Rk” of ?; << R3/2/RA’2 , 

where R < R n .  For a photon or neutrino universe the condition s x  >> 1 is simply 

31 < <  XR - C / ( P C ) ” ~  . 

In curved space: K = *l, and for s x  >>  1, 

and Sp/pcc$x2.  These results are the same as (179) in a universe in which the 

supernuclear state holds for x << 1. But in a photon or neutrino universe of 

positive curvature the modes 

k 2  = ~ ( y  t 2)  < 1 2 ,  

or  the f i rs t  two modes y = 1 and 2,  grow exponentially. However, since 0 < x < n, 

their growth is limited. 

We can summarize by saying that the contrast density oscillates with con- 

stant amplitude for short wavelengths and increases linearly with time for long 

wavelengths. 
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6. DISCUSSION 

The vibrations of the universe are moderately well behaved and show no 

signs of a catastrophic growth in amplitude. This conclusion has been reached 

by several authors in various ways. Within the limitations of simple, linearized 

theory the expanding universe is reasonably stable. This is illustrated in an 

approximate manner by Jeans’ theory. The gravitational frequency is of the 

order i (pC)’/ ’ , and the age of the universe is of the order (PC)- ”~  , and hence 

perturbations cannot grow significantly in the time available. 

In the supernuclear state the contrast density oscillates at constant ampli- 

tude for short wavelengths and increases for long wavelengths according to 

In the subnuclear state the contrast density depends on curvature and the ratio of 

specific heats. The maximum growth rate occurs in a cold universe and 

for expansion at zero curvature. The significance of these results depends on the 

magnitude of the initial disturbance that can be legitimately assumed. For arbi- 

trarily small initial disturbances the results (181) and (182) tend to be meaning- 

less. If the disturbances originate from thermal fluctuations, the mean square 

fluctuation in N particles is4’ 
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at constant temperature T and volume V, where ,L is the chemical potential. The 

right-hand side of (183) is equal to N for a Maxwellian distribution, and is of the 

same order for  a relativistic gas of bosons and fermions in which the Fermi 

energy is equal to kT. Therefore, 

and this is  exceedingly small for large masses containing ordinary gas particles. 

A redeeming feature of the present theory is that the universe in the large 

tends to remain homogeneous and isotropic. If the growth rates (181) and (183) 

adequately accounted for irregularity, then the fundamental modes would also 

increase in the same manner, and in all probability the universe would develop 

pronounced macroscopic anisotropy. What is required is that the universe is 

unstable for an intermediate range of wavelengths which grow rapidly in an 

exponential fashion. At some stage in the expansion the density in various regions 

ceases to diminish with time, and thereafter condensations occur. But such a 

concept demands that the gravitational potential of the disturbance increases 

with time and attains a value of (ci - G M / h  where M is an island mass and h i ts  

radius. But nowhere in the linear analysis is $ an increasing function of time 

in an expanding universe. 

A linearized theory limited to irrotational motions and gravitational inter- 

actions is open to several criticisms. The neglect of all forms of rotation i s  a 

gross simplification, since angular momentum is a common and indispensible 

feature of galactic and stellar systems. It seems plausible that at subnuclear 
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density, at least, a treatment based on rotational motions will lead to even slower 

rates of growth owing to the presence of inertial forces. Gamov 61 has proposed 

a primordial turbulent state of large amplitude fluctuations for the initial con- 

ditions. Similarly, Weiz&cker62 assumes an initial state of turbulent gas clouds. 

Bonnor 

rather than the cause of condensations. Furthermore, initial conditions of this 

nature add to the mystery rather than clarifying it,  and their postulation falls 

within the province of hypothesis A and renders invalid a linear treatment. 

points out, however, that turbulence is more likely to be the result 

The assumption that initial disturbances a re  small, a s  in hypothesis By 

demands that rapid growth is possible at some stage in the expansion of the 

universe. This is impossible unless we abandon the rudimentary fluid prescrip- 

tion. Following a speculative vein, we might suppose that because of complex 

fluid properties (such a s  energy transfer by radiation or  neutrinos) the equation 

of state for perturbations is 6p= -(1 - v) 8pc: and 2, < 1. In effect, the velocity 

of sound is imaginary. Then, for IC, >> R/R , 

IC, cc exp - [ ( l  - ;) 

If such an approach to the problem were possible and could yield rapid and large 

growth, then a s  I IC, I c2, the linear theory breaks down. It is interesting to notice 

that such growth not only could account for differentiation but might also lead to 

the development of phenomena such as the partial concealment of dense masses 

encapsulated in the metric.63 Such bodies, consisting of matter in a primordial 

state, would then burst forth at subsequent epochs as quasi stellar objects, 64 and 

possibly as  explosive nuclei in galaxies. 6 5  To an observer in such a body the 
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universe is still quite young. These concepts have much in common with 

Ambartsumian's hypothesis, 66 and provide a physical mechanism as its basis. 

Clearly, the origin of structure offers a challenging problem, and from this 

point of view a study of the modes of vibration of the universe has merely em- 

phasized the dilemma that confronts us. If there is no way in which we can 

recover our faith in the efficacy of hypothesis B, then we must turn to hypothesis 

A in the hope that the primordial universe contains structure as the natural con- 

sequence of the properties of matter at very high density. 
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